Reducing duration of vancomycin for pneumonia with MRSA nasal polymerase chain reaction (PCR)

Brad Laible, PharmD

Professor, SDSU COPAHP

Lead Pharmacist, Avera Health Antimicrobial Stewardship Program

"I have had no financial relationship over the past 12 months with any commercial sponsor with a vested interest in this presentation"

Case 1

- HPI: Patient is a 67 year-old male who was admitted with an acute exacerbation of heart failure and AKI. On the sixth day of hospitalization, he developed a fever, chills, and productive cough. Chest x-ray indicated a LLL infiltrate. He was subsequently diagnosed with hospital acquired pneumonia. The patient has not had antibiotics in the last year and review of previous microbiology records was unrevealing for MDR organisms.
- PMH: hypertension, hyperlipidemia, heart failure (EF 30%), COPD, diabetes mellitus
- **SH**: smoker (1 ppd x 30 years)
- Allergies: NKDA
- VS: Ht 5'7", Wt 60kg, T 101.1°F, P 99 bpm, BP 115/75 mmHg, RR 22 breaths/min, O₂ sat 89%
- Labs: WBC 17.1, Creatinine 0.9 mg/dL
- Microbiology: Sputum culture ordered
- Antibiotic orders: cefepime 2 g IV q8H, vancomycin 1500 mg IV x 1, then pharmacy to dose

Case 1: Questions to think about...

- 1. Does this patient really need vancomycin?
- 2. Is there any diagnostic testing that can help us figure this out?

Case 1

Any MRSA risk factors?

- IV antibiotic use in last 90 days
- High local prevalence of MRSA
- Long length of hospitalization
 - 5 days or more
- Known history of MRSA colonization or infection
- Intravenous drug use
- Necrotizing pneumonia
- Ill-appearing patient with recent stay in nursing home or long-term care facility

Would testing MRSA Nasal PCR help?

Let's look at the evidence.

Kalil et al. Clin Infect Dis 2016 Wooten et al. Respir Med 2013 Dangerfield et al. Antimicrob Agents Chemother 2014

MRSA Nasal PCR and Pneumonia: Key references

- Parente DM, et al. *Clin Infect Dis* 2018;67(1):1-7.
- Baby N, et al. Antimicrob Agents Chemother 2017; 61(4): e02432-16.
- Willis C, et al. Am J Health-Syst Pharm 2017; 74:1765-73.

	Study population	Intervention	Key Findings
Parente 2018	Meta-analysis 22 studies n = 5243 CAP, HCAP, VAP Prevalence of MRSA PNA = 10%	Screening by both nasal culture and PCR	All types: Sensitivity 70.9%, Specificity 90.3%, PPV 44.8%, NPV 96.5% CAP/HCAP: Sensitivity 85%, Specificity 92.1%, PPV 56.8%, NPV 98.1% VAP: Sensitivity 40.3%, Specificity 93.7%, PPV 35.7%, NPV 94.8%
Baby 2017	Retrospective 57 patients (27 pre-PCR, 30 PCR protocol) CAP, HCAP, HAP	PCR per pharmacy- driven protocol; vancomycin or linezolid for pneumonia	Pre-PCR vs PCR: Reduced duration of empiric MRSA-targeted agents: 74 h vs 27.4 h, p < 0.0001 Reduced % patients with a vancomycin level: 48.1% vs 16.7%, p = 0.02 Days to clinical improvement, LOS, mortality: No difference Less AKI, 26% vs 3.3%, p = 0.02
Willis 2017	Retrospective 300 patients (150 pre-PCR, 150 PCR protocol) CAP, HCAP, HAP, AECOPD	PCR per pharmacy- driven protocol; vancomycin for pneumonia or AECOPD	Pre-PCR vs PCR: Reduced duration of vancomycin: 4.2 vs 2.1 days of therapy, <i>p</i> < 0.0001 Reduced median vancomycin levels: 2 vs 1, <i>p</i> < 0.0001 Days to clinical improvement, AKI, LOS, mortality: no difference 55.2% of patients with neg PCR had vancomycin stopped within 24h

MRSA PCR: Nurse obtains STAT sample

Follow directions below—making sure to swab both nostril openings and not swab past the point of resistance, only swabbing right inside of the nostrils

Open the package that contains the swab and transport medium tube. Set the tube aside before collecting the specimen.

Repeat Step 4 on the other nostril with the same swab.

To avoid specimen contamination, do not touch the swab tip to anything after collecting the specimen.

Open the swab wrapper and remove the swab, taking care not to touch the tip of the swab to any surface.

Remove the cap from the tube. Insert the swab into the transport medium.

Hold the swab in your hand, pinching in the middle of the swab shaft on the scoreline.

Rotate swab against the inside of the nostril for 3 seconds while applying pressure with a finger to the outside of the nostril

Do not insert the swabs more than 1-1.5 cm.

Avoid splashing contents on the skin. Wash with soap and water if exposed.

Replace the cap on the tube and close tiahtly.

Specimen should be transported at 2-8 °C.

Prior to testing, specimen may be stored for 24 hours at 15-30 °C or up to 7 days at 2-8 °C

8

5

Case 1

- Vancomycin dosing consult initiated
- MRSA Nasal PCR ordered by pharmacy per protocol
- Vancomycin loading dose given while awaiting results of PCR test
- Within three hours of the order, MRSA nasal PCR reported as NEGATIVE

- What antimicrobial stewardship recommendation should be made?
 - Discontinuation of vancomycin is reasonable

Case 1:

48 hours from culture procurement, the patient's sputum culture returns with growth of *Pseudomonas aeruginosa*, with the following susceptibilities:

- cefepime (S)
- ciprofloxacin (R)
- levofloxacin (R)
- meropenem (S)
- piperacillin-tazobactam (S)

- Remains on cefepime monotherapy (day 3)
- Patient has shown significant improvement and plan is 7 days of total therapy
- Biggest impact: Vancomycin X 1 dose
 - Limited exposure
 - No trough necessary
 - Minimal monitoring and follow up required due to vancomycin

Case 2

- HPI: Patient is a 75 year-old female nursing home resident admitted with suspicion of pneumonia due to fever, chills, and productive cough. Chest x-ray indicated a LLL infiltrate. The patient received ciprofloxacin 3 months ago for a urinary tract infection (*E. coli*)but review of previous microbiology records was unrevealing for MDR organisms.
- **PMH**: hypertension, hyperlipidemia, diabetes mellitus, and osteoarthritis.
- Allergies: NKDA
- VS: Ht 5' 4", Wt 70 kg, T 101.7°F, P 105 bpm, BP 127/91 mmHg, RR 24 breaths/min, O₂ sat 90%
- Labs: WBC 15.1, Creatinine 0.9 mg/dL
- Microbiology: Sputum culture ordered
- Antibiotic orders: Piperacillin-tazobactam 4.5 g IV q6H, vancomycin 1500 mg IV x 1, then pharmacy to dose

Case 2: Same questions...

Any MRSA risk factors?

- IV antibiotic use in last 90 days
- High local prevalence of MRSA
- Long length of hospitalization
 - 5 days or more
- Known history of MRSA colonization or infection
- Intravenous drug use
- Necrotizing pneumonia
- Ill-appearing patient with recent stay in nursing home or long-term care facility

Would testing MRSA Nasal PCR help?

Seems justified

Kalil et al. Clin Infect Dis 2016 Wooten et al. Respir Med 2013 Dangerfield et al. Antimicrob Agents Chemother 2014

Case 2

- Vancomycin dosing consult initiated
- MRSA Nasal PCR ordered by pharmacy per protocol
- Vancomycin loading dose given while awaiting results of PCR test
- Within three hours of the order, MRSA nasal PCR reported as POSITIVE

- Any antimicrobial stewardship recommendation to be made here?
 - Due to low Positive Predictive Value, need for vancomycin still unclear
 - Suggest continue vancomycin pending culture results

Case 2:

48 hours from culture procurement, the patient's sputum culture returns with growth of *E. coli*, with the following susceptibilities:

- ampicillin-sulbactam(R)
- cefepime (S)
- ceftriaxone (S)
- ciprofloxacin (R)
- levofloxacin (R)
- meropenem (S)
- piperacillin-tazobactam(S)

- Patient has shown significant improvement and plan is 7 days of total therapy
- Any other antimicrobial stewardship recommendation(s) to be made?
 - Does vancomycin need to continue due to positive MRSA nasal PCR?
 - Likely not. Positive MRSA nasal PCR may merely represent colonization.

Outcomes of a pharmacist driven methicillinresistant staphylococcus aureus (MRSA) surveillance protocol using polymerase chain reaction (PCR) technology

Kevin Wintz

PGY1 Pharmacy Resident

Avera McKennan Hospital and University Health Center

Sioux Falls, SD

Primary Outcome

Total Hours

■ Pre ■ Post

Secondary Outcome

All

Doses 4.5 4 4.2 4.2 3.5 3 2.5 2.6 2 1.5 1.7 1 0.5 0 n=100 n=104 n=94 n=56

Per protocol

■ Pre ■ Post

Secondary Outcome

Levels

■ Pre ■ Post

Secondary Outcomes

Secondary Outcome	Pre-Protocol (n=100)	Post-Protocol (n=104)	P Value
In hospital mortality	n=14	n=17	0.7
Length of stay	8.6 days	7.9 days	0.53
Δ Serum creatinine	-0.255 (n=75)	-0.035 (n=85)	0.019
MRSA + culture (respiratory or blood)	n=4	n=2	0.41

Take home points...

- Due to the high negative predictive value, MRSA nasal PCR can be a useful tool
 - Reduced vancomycin duration, doses and levels
 - No apparent negative impact
- Positive MRSA nasal PCR results have poor positive predictive value and may merely represent colonization

- Ongoing questions
 - How long to we consider someone "negative" after a negative MRSA nasal PCR test?
 - 7 days?
 - How often will we see a negative MRSA nasal PCR test but positive culture results for MRSA?
 - Probably depends on prevalence
 - Can MRSA nasal PCR testing be used to rule out MRSA for infections other than pneumonia?
 - Some data for bloodstream, skin/soft tissue, bone/joint, UTI, Intraabdominal
 - Data not as strong

AUC-Based Dosing of Vancomycin

Brad Laible, PharmD

Professor, SDSU COPAHP

Lead Pharmacist, Avera Health Antimicrobial Stewardship Program

2009 Vancomycin Dosing Guidelines

Concentrations

- AUC/MIC ratio <a> 400 mg*h/L is the target for effectiveness
 - Mainly based on *S. aureus* pneumonia data
- Troughs are a practical surrogate
- Troughs before 4th dose
- Troughs should be > 10 mg/L to avoid resistance development
 - Goal trough 15 20 mg/L for bacteremia, endocarditis, osteomyelitis, meningitis and pneumonia

The problems with trough-only monitoring...

- Troughs only measure one concentration at a specific time
- Dosing curves can look different but result in the same trough
 - Size of dose
 - Elimination rate
- Often a trough of 15 mcg/mL is NOT necessary to achieve an adequate AUC/MIC of 400 mg*h/L

Patel N, et al. Clin Infect Dis 2011 Neely MN, et al. Antimicrob Agent Chemother 2013

The problems with trough-only monitoring...

- Limited data to suggest a target trough of 15 20 mg/L improves efficacy
- Troughs > 15 mg/L associated with increased risk of acute kidney injury (AKI) compared to troughs < 15 mg/L in one meta-analysis
 - OR 2.76 (95% CI, 1.94 3.93)
- Several studies suggest higher rates of AKI when daily AUC/MIC exceeds 700 – 1300 mg*h/L

Van Hal SJ, et al. Antimicrob Agent Chemother 2013 Suzuki Y, et al. Chemotherapy 2012 Lodise TP, et al. Clin Infect Dis 2009

Proposed Update to 2009 Vancomycin Dosing Guidelines

Summary and Recommendations:

1. Based on the current body of evidence of vancomycin PK/PD and clinical outcomes in

patients with serious MRSA infections, a Bayesian-derived AUC/MIC_{BMD} ratio of 400 to 600

(assuming a vancomycin MIC_{BMD90} of 1 mg/L) should be advocated as the target to achieve

clinical efficacy while improving patient safety (IA+).

5. Trough only monitoring, with target between 15-20 mg/L, is no longer recommended for patients with serious infections due to MRSA (IIB-).

So how are we going to do this???

$$\frac{\text{Predicted steady-state AUC}_{24}}{\text{AUC}_{24} = (\text{AUC}_{inf} + \text{AUC}_{elim}) \times (24/\tau au)}$$
$$\frac{\text{AUC}_{inf} = (\underline{C}_{max} + \underline{C}_{min}) \times t}{2}$$
$$\frac{\text{AUC}_{elim} = (\underline{C}_{max} - \underline{C}_{min})}{Ke}$$

- Excel-based calculators (homegrown)
- Calculator built into EMR
- Bayesian software
- Various on-line calculators

Calculation with Excel

- Will require 2-level sampling, at least to confirm initial dose
- Levels will be used to calculate relevant parameters necessary to determine AUC
- Once dose established, should be able to do once weekly trough monitoring if renal function stable

	A	В	С	D	E	F	G	Н		J	K	L	M	N	0	Р
1	Vancomyc	in Dosing	Nomogran	n A for AU(<u> 24 400 - 60</u>	00 mg*h/L	(target: 500	0 mg*h/L)								
2																
3	***Notes:															
4	1) This nor	nogram is	NOT inten	ded for us	e in patier	nts with un	stable rena	al function	or acute k	idney injur	y - track cr	eatinine cl	hanges clo	sely!		
5	2) Intende	d for use i	in patients	with total	body weig	tht betwee	en 40 kg an	d 140 kg ar	nd CrCl > 30	mL/min	_			-		
6	3) Assume	s maximu	m CrCL of 1	L40 mL/mir	יי ח		Ŭ		_							
7	4) All dose	s are in m	g		-											
8			0													
9	BMI < 40															
10		CrCl (mL/)	min)													
11	Wt (kø)	30	40	50	60	70	80	90	100	110	120	130	140	Loading Dose		
12	120	1000a24	1500a24	1000a12	1000a12	1000a8	1000a8	1000a8	1000a8	1000a6	1000a6	1000a6	1000a6	2000		
13	110	1000q24	1500q24	1000q12	1000q12	1000q12	1000q8	1000q8	1000q8	1000q8	1000q6	1000q6	1000q6	2000		
14	100	1000q24	1250q24	750q12	1000q12	1000q12	1000q12	1000q8	1000q8	1000q8	1000q6	1000q6	1000q6	2000		
15	90	1000q24	1250q24	750q12	750q12	1000q12	1000q12	1000q12	1000q8	1000q8	1000q8	1000q6	1000q6	1750		
16	80	750q24	1000q24	1000q24	750q12	1000q12	1000q12	1000q12	1000q12	1000q8	1000q8	1000q8	1000q8	1750		
17	70	750q24	1000q24	1000q24	750q12	750q12	750q12	1000q12	1000q12	1000q12	750q8	1000q8	1000q8	1500		
18	60	500q24	750q24	1000q24	1000q24	750q12	750q12	750q12	1000q12	1000q12	1000q12	750q8	750q8	1250		
19	50	500q24	750q24	750q24	1000q24	1000q24	500q12	750q12	750q12	750q12	1000q12	750q8	750q8	1000		
20	40	500q24	500q24	750q24	750q24	750q24	500q12	500q12	500q12	750q12	750q12	500q8h	500q8h	1000		
21																
22	BMI ≥40															
23		CrCl (mL/I	min)													
24	Wt (kg)	30	40	50	60	70	80	90	100	110	120	130	140	Loading Dose		
25	140	<u>1000q24</u>	1500q24	1750q24	1000q12	1000q12	1250q12	1000q8	1000q8	1000q8	1000q6	1000q6	1000q6	2000		
26	130	<u>1000q24</u>	1250q24	1500q24	1000q12	1000q12	1250q12	1000q8	1000q8	1000q8	1000q6	1000q6	1000q6	2000		
27	120	1000q24	1250q24	1500q24	1750q24	11000q12	11000q12	1250q12				11000q6	11000q6	2000		
28	110	<u>1000q24</u>	1000q24	1250q24	1500q24	11000q12	11000q12	11000q12	1250q12			11000q8		2000		
29	100	75Uq24	1000q24	1250q24	11500q24	1750q12	11000q12	11000q12	1250q12	11250q12	11250q12		11000q8	2000		
30	90	75Uq24	11000q24	11000q24	125Uq24	1750q12	11000q12	11000q12	11000q12	1125Uq12	11250q12	11000q8	11000q8	1750		
51																
32	***NE	XT STE	EP: DET	FERMII	NE PAT	LIENT-S	SPECIF	IC AUC	24 USI	NG EM	י IPIRIC י	VANCO	DOSI	NG CALCI	JLATO	R***

	Α	В	U	U	E	F	G	H			
1	Vanco Predictive Kinetics									5	
2	Estimated CrCl	100	mL/min		***Empirio	- Decing Cale	ulator***				
3	Predicted Ke	0.087	h-1		****Empiric	Dosing Can	Cularon				
4	Predicted half-life	7.9	hours								
5					GoalAUC24: 400 - 600 mg*h/L						
6	Predict doses / variables										
7	Weight	100	kg		Targets:						
8	Infusion Duration	1.5	hours		500 mg*h/L	for most i	nfectionsi	ncluding ba	icteremia		
9	Dose	1000	mg		600 mg*h/L	for CNS in	fections				
10	Interval	8	hours								
11	Vd conversion factor* (dropdown)	0.7	liters/kg	l							
12	Vd estimate	70	liters								
13	Ke	0.087	hours-1								
14	Half Life	7.9	hours								
15	Predicted CpMax	26.6	mcg/ml								
16	Predicted CpMin	15.1	mcg/ml								
17											
18	CpMax (mcg/mL)	CpMin (mcg/mL)	Infusion Duration (h)	AUC in	f Keih-1	Interval (h)	AUCelim	AUC 24			
19	26.6	15.1	1.5	3	1.3 0.087	' 8	132.0	489.8			
20											
21	*Suggest Vd conversion factor of 0.7 L/kg i	if BMI < 30, 0.6 L	/kg if BMI 30 - 40, and 0.5 L/kg if I	BMI > 40)						
22											
23	Formula Cells - No changes										
24	Default Cells - Can be changed										
25	Data Cells - Manually entered										
0.000											

A	В	С		D	E	F	G	Н		
Vancomycin Peak/Trough at Steady State										
			Г							
Patient Specific Kinetics				2-Leve	l Dosing Ca	lculator at	Steady-Sta	ate		
Scheduled infusion duration	1.5	hour(s)								
Dose	1500	mg		***THI	S CALCULA	TOR IS PRE	FERRED F	OR		
Interval	12	hours		BLOODSTREAM AND CNS INFECTIONS***						
Time from end of infusion to 1st level (Peak)	1.5	hours								
Drawn 1st Level (Peak)	35	mcg/ml		Goal A	UC 24: 400	- 600 mg*t	n/L			
Drawn 2nd Level (Trough)	16	mcg/ml					•-			
Time between 1st & 2nd Level	8	hours		Target						
Ke	0.098	hours-1		500 mg	 r*h∕l for m	ost infecti	ons includ	inghactere	mia	
Half Life	7.1	hours		600 mg	r*h/l for Cl	NSinfortio	ns	m ₆ buccere		
CpMax	40.5	mcg/ml		000 1118	S INFERIOR C	NJ III ECCIO				
CpMin	14.5	mcg/ml								
Vd	49.8	Liters	L		1					
CpMax (mcg/mL)	CpMin (mo	Infusion Duration (h)	Al	JC inf	Ke h-1	Interval (h)	AUCelim	AUC 24		
40.5	14.5	1.5		41.3	0.098	12	266.0	614.5		
1										
Adjustment Equations										
Infusion Duration	1.5	hours								
. Dose	1250	mg								
Interval	12	hours								
- Vd	49.8	Liters								
i Ke	0.098	hours-1								
Predicted CpMax	33.8									
Predicted CpMin	12.1									
1										
CpMax (mcg/mL)	CpMin (mo	Infusion Duration (h)	Al	JC inf	Ke h-1	Interval (h)	AUCelim	AUC 24		
33.8	12.1	1.5		34.4	0.098	12	221.6	512.1		
1										
Formula Cells - no changes										
Default Cells - Can be changed										
Data Cells - Manually entered										
▲ ► ► Vanco AUC Nomodram A / Vanco AUC	Nomoaram	B / Empiric Vanco Dosino Calcula	ator	Var	nco 2 level	Css / Vano	:o Trouah (

Potential pitfalls...

- Potential for increased resource utilization
 - Drug concentrations
 - Pharmacist time in evaluation
- Education/awareness
 - Breaking the "trough of 15 20 mg/L" mindset
 - Re-familiarize all staff with vancomycin peaks again
- Transitions of care
 - Will this be realistic outside of the acute care setting?

Questions?